最新频谱仪触发方式4篇(通用)

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

频谱仪触发方式篇一

教学内容:教材p79例5及练习十七第11、12、13题。教学目标:

知识与技能:结合具体事例,学生自主尝试列方程解决稍复杂的相遇问题。

过程与方法:根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。

情感、态度与价值观:体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。教学重点:正确寻找数量间的等量关系式。

教学难点:创设情境提高学生的学习兴趣,并利用画线段图的方法帮助学生分析理解等量关系。

教学方法:创设情境、知识迁移、自主探究、合作交流。教学准备:多媒体。教学过程

一、复习导入

1.复习:我们学过有关路程的问题,谁来说一说路程、速度、时间之间的关系?

学生回答:路程=速度×时间。

2.引导:一般情况下,咱们算的路程问题都是向同一个方向走的。那么,想一想,如果两个人同时从一段路的两端出发,相对而行,会怎样?(相遇)

3.揭题:今天我们就利用方程来研究相遇问题。

二、互动新授

1.出示教材第79页例5。

引导学生观察,并思考题中的已知条件和要求的问题是什么? 学生自主回答:已知:小林和小云家相距4.5千米,小林的骑车速度是每分钟250m,小云的骑车速度是每分钟200m。问题:两人何时相遇?

2.质疑:求相遇的时间是什么意思?

引导学生明白:这里的路程已经不是一个人行驶了,而是两个人行驶的路程之和。相遇的时间就是两个人共同行使全程用的时间。

3.活动:让学生上台走一走演示相遇,并用画线段图的方法分析数量关系。

出示线段图,教师讲解线段图:

先用一条线段表示全程,小林与小云分别从相对的方向出发,经过一段时间后相遇,也就是行完了全程。

追问:从线段图中,你知道了什么?

学生交流,汇报:小林骑的路程+小云骑的路程=总路程。4.质疑:现在能不能求出小林骑的路程和小云的路程呢? 引导学生汇报:都不能求出,因为他们行驶的时间不知道。再思考:他们两个行驶的时间一样吗?为什么?

学生交流后会发现:他们是同时出发,所以相遇时行驶的时间应该是一样的,可以把他们行驶的时间都设为x。

5.让学生根据分析,尝试列方程解答问题。

小组交流,汇报,教师根据学生的汇报板书(见板书设计): 引导学生对这两种方法进行比较:通过比较可以知道这两种方法是运用了乘法分配律。

引导小结:在相遇问题中有哪些等量关系? 板书:甲速×相遇时间+乙速×相遇时间=路程

(甲速+乙速)×相遇时间=路程

三、巩固拓展

书上第82页第12题:两地间的路程是455千米.甲、乙两辆汽车同时从两地开出,相向而行,经过3.5小时相遇。甲车每小时行68千米,乙车每小时行多少千米?

学生读题,找出已知所求,引导学生根据例题的线段图画出线段图,并解答。

解:设乙车平均每小时行x 千米。

3.5x+ 68×3.5 =455

x =135 答:甲车平均每小时行135千米。

四、课堂小结

师:这节课你学会了什么知识?有哪些收获? 引导总结:

1.通过画线段图可以清楚地分析数量之间的相等关系。2.解决相遇问题要用数量关系:甲速×相遇时间+乙速×相遇时间=路程;(甲速+乙速)×相遇时间=路程。

3.列方程解求速度、相遇时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。

五、作业:教材第82页练习十七第11、13题。

板书设计:

用方程解决相遇问题

小林骑的路程+小云骑的路程=总路程 解:设两人x 分钟后相遇。

方法一:0.25x +0.2x =4.5

方法二:(0.25+0.2)x =4.5

0.45x =4.5

0.45x =4.5

0.45x ÷0.45=4.5÷0.45

0.45x ÷0.45=4.5÷0.45

x =10

x =1o 答:两人10分钟后相遇。

甲速×相遇时间+乙速×相遇时间=路程(甲速+乙速)×相遇时间=路程

频谱仪触发方式篇二

传导与辐射超标整改方案

开关电源电磁干扰的产生机理及其传播途径

功率开关器件的高额开关动作是导致开关电源产生电磁干扰(emi)的主要原因。开关频率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的emi问题。开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。现在按噪声干扰源来分别说明:

1、二极管的反向恢复时间引起的干扰

交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。由电流波形可知,电流中含有高次谐波。大量电流谐波分量流入电网,造成对电网的谐波污染。另外,由于电流是脉冲波,使电源输入功率因数降低。

高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于pn结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。

2、开关管工作时产生的谐波干扰

功率开关管在导通时流过较大的脉冲电流。例如正激型、推挽型和桥式变换器的输入电流波形在 阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。当采用零电流、零电压开关时,这种谐 波干扰将会很小。另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生 尖峰干扰。

3、交流输入回路产生的干扰

无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。这种通过电磁辐射产生的干扰称为辐射干扰。

4、其他原因

元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(pcb)走线通常采用手工布 置,具有很大的随意性,pcb的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成emi干扰。这增加了pcb分布参数的提取和近场干扰估计的难度。flyback 架构noise 在频谱上的反应

0.15 mhz处产生的振荡是开关频率的3次谐波引起的干扰。0.2 mhz处产生的振荡是开关频率的4次谐波和mosfet 振荡2(190.5khz)基波的迭加,引起的干扰;所以这部分较强。

0.25 mhz处产生的振荡是开关频率的5次谐波引起的干扰;0.35 mhz处产生的振荡是开关频率的7次谐波引起的干扰;0.39 mhz处产生的振荡是开关频率的8次谐波和mosfet 振荡2(190.5khz)基波的迭加引起的干扰;1.31mhz处产生的振荡是diode 振荡1(1.31mhz)的基波引起的干扰;3.3 mhz处产生的振荡是mosfet 振荡1(3.3mhz)的基波引起的干扰;开关管、整流二极管的振荡会产生较强的干扰

设计开关电源时防止emi的措施: 1.把噪音电路节点的pcb铜箔面积最大限度地减小;如开关管的漏极、集电极,初次级绕组的节点,等。

2.使输入和输出端远离噪音元件,如变压器线包,变压器磁芯,开关管的散热片,等等。3.使噪音元件(如未遮蔽的变压器线包,未遮蔽的变压器磁芯,和开关管,等等)远离外壳边缘,因为在正常操作下外壳边缘很可能靠近外面的接地线。

4.如果变压器没有使用电场屏蔽,要保持屏蔽体和散热片远离变压器。

5.尽量减小以下电流环的面积:次级(输出)整流器,初级开关功率器件,栅极(基极)驱动线路,辅助整流器。

6.不要将门极(基极)的驱动返馈环路和初级开关电路或辅助整流电路混在一起。7.调整优化阻尼电阻值,使它在开关的死区时间里不产生振铃响声。8.防止emi滤波电感饱和。

9.使拐弯节点和 次级电路的元件远离初级电路的屏蔽体或者开关管的散热片。10.保持初级电路的摆动的节点和元件本体远离屏蔽或者散热片。11.使高频输入的emi滤波器靠近输入电缆或者连接器端。12.保持高频输出的emi滤波器靠近输出电线端子。

13.使emi滤波器对面的pcb板的铜箔和元件本体之间保持一定距离。14.在辅助线圈的整流器的线路上放一些电阻。15.在磁棒线圈上并联阻尼电阻。

16.在输出rf滤波器两端并联阻尼电阻。17.在pcb设计时允许放1nf/ 500 v陶瓷电容器或者还可以是一串电阻,跨接在变压器的初级的静端和辅助绕组之间。

18.保持emi滤波器远离功率变压器;尤其是避免定位在绕包的端部。

19.在pcb面积足够的情况下, 可在pcb上留下放屏蔽绕组用的脚位和放rc阻尼器的位置,rc阻尼器可跨接在屏蔽绕组两端。

20.空间允许的话在开关功率场效应管的漏极和门极之间放一个小径向引线电容器(米勒电容,10皮法/ 1千伏电容)。

21.空间允许的话放一个小的rc阻尼器在直流输出端。22.不要把ac插座与初级开关管的散热片靠在一起。

开关电源emi的特点

作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板(pcb)走线通常采用手工布线,具有更大的随意性,这增加了pcb分布参数的提取和近场干扰估计的难度。

1mhz以内—-以差模干扰为主,增大x电容就可解决

1mhz—5mhz—差模共模混合,采用输入端并一系列x电容来滤除差摸干扰并分析出是哪种干扰超标并解决;5m—以上以共摸干扰为主,采用抑制共摸的方法.对于外壳接地的,在地线上用一个磁环绕2圈会对10mhz以上干扰有较大的衰减(diudiu2006);对于25–30mhz不过可以采用加大对地y电容、在变压器外面包铜皮、改变pcb layout、输出线前面接一个双线并绕的小磁环,最少绕10圈、在输出整流管两端并rc滤波器.30—50mhz 普遍是mos管高速开通关断引起,可以用增大mos驱动电阻,rcd缓冲电路采用1n4007慢管,vcc供电电压用1n4007慢管来解决.100—200mhz 普遍是输出整流管反向恢复电流引起,可以在整流管上串磁珠

100mhz-200mhz之间大部分出于pfc mosfet及pfc 二极管,现在mosfet及pfc二极管串磁珠有效果,水平方向基本可以解决问题,但垂直方向就很无奈了

开关电源的辐射一般只会影响到100m 以下的频段.也可以在mos,二极管上加相应吸收回路,但效率会有所降低。1mhz 以内—-以差模干扰为主 1.增大x 电容量;

2.添加差模电感;3.小功率电源可采用pi 型滤波器处理(建议靠近变压器的电解电容可选用较大些)。

1mhz—5mhz—差模共模混合,采用输入端并联一系列x 电容来滤除差摸干扰并分析出是哪种干扰超标并以解决,1.对于差模干扰超标可调整x 电容量,添加差模电感器,调差模电感量;2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制;

3.也可改变整流二极管特性来处理一对快速二极管如fr107 一对普通整流二极管1n4007。5m—以上以共摸干扰为主,采用抑制共摸的方法。

对于外壳接地的,在地线上用一个磁环串绕2-3 圈会对10mhz 以上干扰有较大的衰减作用;可选择紧贴变压器的铁芯粘铜箔, 铜箔闭环.处理后端输出整流管的吸收电路和初级大电路并联电容的大小。

对于20–30mhz,1.对于一类产品可以采用调整对地y2 电容量或改变y2 电容位置; 2.调整一二次侧间的y1 电容位置及参数值;

3.在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕组的排布。4.改变pcb layout;

5.输出线前面接一个双线并绕的小共模电感;

6.在输出整流管两端并联rc 滤波器且调整合理的参数; 7.在变压器与mosfet 之间加bead core; 8.在变压器的输入电压脚加一个小电容。9.可以用增大mos 驱动电阻.30—50mhz 普遍是mos 管高速开通关断引起,1.可以用增大mos 驱动电阻;

缓冲电路采用1n4007 慢管; 供电电压用1n4007 慢管来解决;

4.或者输出线前端串接一个双线并绕的小共模电感; 5.在mosfet 的d-s 脚并联一个小吸收电路; 6.在变压器与mosfet 之间加bead core; 7.在变压器的输入电压脚加一个小电容;

心layout 时大电解电容,变压器,mos 构成的电路环尽可能的小; 9.变压器,输出二极管,输出平波电解电容构成的电路环尽可能的小。50—100mhz 普遍是输出整流管反向恢复电流引起,1.可以在整流管上串磁珠;

2.调整输出整流管的吸收电路参数;

3.可改变一二次侧跨接y电容支路的阻抗,如pin脚处加bead core或串接适当的电阻; 4.也可改变mosfet,输出整流二极管的本体向空间的辐射(如铁夹卡mosfet;铁夹卡diode,改变散热器的接地点)。5.增加屏蔽铜箔抑制向空间辐射.200mhz 以上 开关电源已基本辐射量很小,一般可过emi 标准。

传 导 方 面 emi 对 策 传导冷机时在0.15-1mhz超标,热机时就有7db余量。主要原因是初级bulk电容df值过大造成的,冷机时esr比较大,热机时esr比较小,开关电流在esr上形成开关电压,它会压在一个电流ln线间流动,这就是差模干扰。解决办法是用esr低的电解电容或者在两个电解电容之间加一个差模电感。………辐 射 方 面 emi 对 策

辐射在30~300mhz频段内出现宽带噪声超标

通过在电源线上增加去耦磁环(可开合)进行验证,如果有改善则说明和电源线有关系,采用以下整改方法:如果设备有一体化滤波器,检查滤波器的接地是否良好,接地线是否尽可能短;

金属外壳的滤波器的接地最好直接通过其外壳和地之间的大面积搭接。检查滤波器的输入、输出线是否互相靠近。适当调整x/y电容的容值、差模电感及共模扼流圈的感量;调整y电容时要注意安全问题;改变参数可能会改善某一段的辐射,但是却会导致另外频度变差,所以需要不断的试,才能找到最好的组合。适当增大触发极上的电阻值不失为一个好办法;也可在开关管晶体管的集电极(或者是mos管的漏极)或者是次级输出整流管对地接一个小电容也可以有效减小共模开关噪声。开关电源板在pcb布线时一定要控制好各回路的回流面积,可以大大减小差模辐射。在pcb电源走线中增加104/103电容为电源去耦;在多层板布线时要求电源平面和地平面紧邻;在电源线上套磁环进行比对验证,以后可以通过在单板上增加共模电感来实现,或者在电缆上注塑磁环。输入ac线的l线的长度尽量短;

屏蔽设备内部,孔缝附近是否有干扰源;结构件搭接处是否喷有绝缘漆,采用砂布将绝缘漆擦掉,作比较试验。检查接地螺钉是否喷有绝缘漆,是否接地良好。

频谱仪触发方式篇三

led驱动500k传导超标整改

led驱动,500k频率超,avg超了2db

差、共模干扰共存

去掉地线,验证下是不是共模;加大y电容,看效果。加强共模滤波。电源的入口处加47u电容,看效果。

调整滤波器参数,差模电感必加约300-400uh。可采用如下方法:(1)调整x电容的容量;

(2)增加两个差模电感;(3)调整共模电感的参数;

(4)虽然是低频,也可能是共模,需根据实际问题而定:

低频超标问题,只差模滤波方法可效果不佳,低频无共模干扰问题的前提是,共模电感、高频变压器设对此类共模抑制能力较强,如果它们设计欠佳,也会出现此类问题。

频谱仪触发方式篇四

用频谱仪解决传导超标问题手记

一套传导测试设备国产的最简单配置包括隔离电源,人工电源网络,最少也需要3万多,按标准配置需要10多万,但boos不会只为一个产品做ccc或vde认证而购买这些设备,就一台频谱仪的情况下只能想办法自己解决这些棘手的问题。

1.使用普通示波器探头,前端按照gb17743做一个隔离转换电路。

2.将隔离转换电路接信号发生器的端子接到示波器探头上,示波器探头接入频谱仪信号输入端,将需要检测的电源线(l或n)串入隔离转换电路的输出端。

3.设置好频谱仪扫描的开始频率和结束频率,调整好频谱仪参考电平,这点很重要,这种测试只能是对比测试。用参考机做比较,得出这一频段的骚扰电平,在比较测试机。比较得知这个频段得骚扰电平是否超标。

例如:150khz-200khz超标对比,开始频率设置为140k,结束频率设置为300khz。接入ok样板扫描电源线火线,得到在165khz最高电平-52dbm,比较超标机得到在165khz最高电平-43dbm,整改后再次测试直到小于-55dbm认为整改有效。

用1mh的共模电感改隔离变压器,本人用绿色小磁环的那种共模电感改制而成,初级15t,次级20t。

用这种方法整改后再到emc实验室做摸底测试(收费少喔),然后送到国家认可的实验室做认证就可以帮boss省钱了,不过boss并不知道你为他省下了这笔钱,所以记得提醒boos喔!

gary chou 整理

2013.01.04


已发布

分类

来自