学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。那么心得体会怎么写才恰当呢?以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。
eda课程心得体会篇一
quartus ii 软件使用及组合电路设计仿真
实验目的:
学习quartus ii 软件的使用,掌握软件工程的建立,vhdl源文件的设计和波形仿真等基本内容。
实验内容:
1.四选一多路选择器的设计 基本功能及原理 :
选择器常用于信号的切换,四选一选择器常用于信号的切换,四选一选择器可以用于4路信号的切换。四选一选择器有四个输入端a,b,c,d,两个信号选择端s(0)和s(1)及一个信号输出端y。当s输入不同的选择信号时,就可以使a,b,c,d中某一个相应的输入信号与输出y端接通。
逻辑符号如下:
程序设计:
软件编译:
在编辑器中输入并保存了以上四选一选择器的vhdl源程序后就可以对它进行编译了,编译的最终目的是为了生成可以进行仿真、定时分析及下载到可编程器件的相关文件。仿真分析:
仿真结果如下图所示
分析:
由仿真图可以得到以下结论:
当s=0(00)时y=a;当s=1(01)时y=b;当 s=2(10)时y=c;当s=3(11)时y=d。符合我们最开始设想的功能设计,这说明源程序正确。2.七段译码器程序设计 基本功能及原理:
七段译码器是用来显示数字的,7段数码是纯组合电路,通常的小规模专用ic,如74或4000系列的器件只能作十进制bcd码译码,然而数字系统中的数据处理和运算都是2进制的,所以输出表达都是16进制的,为了满足16进制数的译码显示,最方便的方法就是利用vhdl译码程序在fpga或cpld中实现。本项实验很容易实现这一目的。输出信号的7位分别接到数码管的7个段,本实验中用的数码管为共阳极的,接有低电平的段发亮。数码管的图形如下
七段译码器的逻辑符号:
程序设计:
软件编译:
在编辑器中输入并保存了以上七段译码器的vhdl源程序后就可以对它进行编译了,编译的最终目的是为了生成可以进行仿真、定时分析及下载到可编程器件的相关文件
。仿真分析:
仿真结果如下图所示:
分析: 由仿真的结果可以得到以下结论:
当a=0(0000)时led7=1000000 此时数码管显示0; 当a=1(0001)时led7=1111001 此时数码管显示1; 当a=2(0010)时led7=0100100 此时数码管显示2; 当 a=3(0011)时led7=0110000 此时数码管显示3; 当 a=4(0100)时led7=0011001 此时数码管显示4; 当 a=5(0101)时led7=0010010 此时数码管显示5; 当 a=6(0110)时led7=0000010 此时数码管显示6; 当 a=7(0111)时led7=1111000 此时数码管显示7; 当 a=8(1000)时led7=0000000 此时数码管显示8; 当a=9(1001)时led7=0010000 此时数码管显示9; 当a=10(1010)时led7=0001000 此时数码管显示a; 当a=11(1011)时led7=0000011 此时数码管显示b; 当 a=12(1100)时led7=1000110 此时数码管显示c; 当a=13(1101)时led7=0100001 此时数码管显示d; 当a=14(1110)时led7=0000110 此时数码管显示e; 当a=15(1111)时led7=0001110 此时数码管显示f;
这完全符合我们最开始的功能设计,所以可以说明源vhdl程序是正确的。
实验心得:
通过这次实验,我基本掌握了quartus ii软件的使用,也掌握了软件工程的建立,vhdl源文件的设计和波形仿真等基本内容。在实验中,我发现eda这门课十分有趣,从一个器件的功能设计到程序设计,再到编译成功,最后得到仿真的结果,这其中的每一步都需要认真分析,一遍又一遍的编译,修改。当然,中间出现过错误,但我依然不放弃,一点一点的修改,验证,最终终于出现了正确的仿真结果,虽然有一些毛刺,但是总的来说,不影响整体的结果。
实验二:计数器设计与显示
实验目的:
(1)熟悉利用quartus ii中的原理图输入法设计组合电路,掌握层次化的设计方法;
(2)学习计数器设计,多层次设计方法和总线数据输入方式的
仿真,并进行电路板下载演示验证。实验内容:
1.完成计数器设计
基本功能及原理:
本实验要设计一个含有异步清零和计数使能的4位二进制加减可控计数器,即有一个清零端和使能端,当清零端为1时异步清零,即所有输出值都为0,当使能端为0时,计数器停止工作,当使能端为1时,正常工作,由时钟控制。另外,还应该有一个控制端,当控制端为0时,进行减法运算,当控制端为1时,进行加法运算。输出端有输出值和进位端,当进行加法运算时,输出值递增,当减法运算时,输出值递减,同时进位端进行相应的变化。
4位二进制加减计数器的逻辑符号:
程序设计:
软件编译:
在编辑器中输入并保存了以上4位二进制加减计数器的vhdl源程序后就可以对它进行编译了,编译的最终目的是为了生成可以进行仿真、定时分析及下载到可编程器件的相关文件。仿真分析: 仿真结果如下:
分析:
由仿真图可以得到以下结论:
当enable端为0时,所有数值都为0,当enable端为1时,计数器正常工作;当reset端为1时,异步清零,所有输出数值为0,当reset端为0时,正常工作;当updown端为0时,进行减法运算,当updown为1时,进行加法运算;另外,当程序进行减法运算时,出现借位时,co为1,其余为0,当进行加法运算时,出现进位时,co为1,其余为0。图中所有的功能与我们设计的完全一样,所以说明源程序正确。2.50m分频器的设计
基本功能及原理:
50m分频器的作用主要是控制后面的数码管显示的快慢。即一个模为50m的计数器,由时钟控制,分频器所有的端口基本和上述4位二进制加减计数器的端口一样,原理也基本相同。分频器的进位端(co)用来控制加减计数器的时钟,将两个器件连接起来。50m分频器的逻辑符号如下:
程序设计:
软件编译:
在编辑器中输入并保存了以上50m分频器的vhdl源程序后就可以对它进行编译了,编译的最终目的是为了生成可以进行仿真、定时分析及下载到可编程器件的相关文件。仿真分析: 结果如下:
上图为仿真图的一部分,由于整个图太大,所以显示一部分即可,其余部分如图以上图规律一直递增,直到50m为止,然后再重复,如此循环。
上图是部分输出的显示,由于整个图太大,所以只显示部分,其余部分如图递增。
分析:
由仿真图可以看出,当reset为0,enable为1时(因为本实验中计数器的模值太大,为了尽可能多的观察出图形,可让reset一直为0,enable一直为1,即一直正常工作),输出值由0一直递增到50m,构成一个加法计数器,与我们设计的功能一致。3.七段译码器程序设计
基本功能及原理:
七段译码器是用来显示数字的,7段数码是纯组合电路,通常的小规模专用ic,如74或4000系列的器件只能作十进制bcd码译码,然而数字系统中的数据处理和运算都是2进制的,所以输出表达都是16进制的,为了满足16进制数的译码显示,最方便的方法就是利用vhdl译码程序在fpga或cpld中实现。本项实验很容易实现这一目的。输出信号的7位分别接到数码管的7个段,本实验中用的数码管为共阳极的,接有低电平的段发亮。
七段译码器的逻辑符号:
程序设计:
软件编译:
在编辑器中输入并保存了以上七段译码器的vhdl源程序后就可以对它进行编译了,编译的最终目的是为了生成可以进行仿真、定时分析及下载到可编程器件的相关文件。仿真分析:
仿真结果如下图所示:
分析:具体分析与实验一中七段译码器的分析相同,在此不再赘述。计数器和译码器连接电路的顶层文件原理图:
原理图连接好之后就可以进行引脚的锁定,然后将整个程序下载到已经安装好的电路板上,即可进行仿真演示。
实验心得:
经过本次试验,我学到了很多。首先,我加强了对quartus ii软件的掌握;其次,我掌握了电路图的顶层文件原理图的连接,学会了如何把自己设计的程序正确的转化为器件,然后正确的连接起来,形成一个整体的功能器件;最后,我学会了如何安装以及如何正确的把完整的程序下载到电路板上,并进行演示验证。
实验三:大作业设计
(循环彩灯控制器)
实验目的:
综合应用数字电路的各种设计方法,完成一个较为复杂的电路设计。实验内容:
流水灯(循环彩灯)的设计 设计任务:
设计一个循环彩灯控制器,该控制器可控制10个发光二极管循环点亮,间隔点亮或者闪烁等花型。要求至少三种以上花型,并用按键控制花型之间的转换,用数码管显示花型的序号。基本原理:
该控制器由两部分组成,一部分是一个50m的分频器,其主要用来控制花色变化的快慢;另一部分是一个彩灯控制器,该彩灯控制器可由两个开关控制花型的序号,10个输出分别控制10个发光二极管的亮暗,当输出为1时,该发光二极管亮,输出为0时,该二极管灭。将分频器的co端用来控制彩灯控制器的时钟,将两个器件连接起来。1.分频器的设计
50m分频器与实验二中的分频器一样,这里不再赘述。2.彩灯控制器的设计 基本原理:
该彩灯控制器由时钟控制,reset异步清零,enable当做使能端,由两个开关do(0-1)来控制选择不同的花型,10个输出端lig(0-9)来控制10个led灯的亮灭。因为用了两个开关来控制花型,所以一共有4种花色。
彩灯控制器的逻辑符号:
程序设计:
3.七段译码器的设计
七段译码器是用来显示不同花型的序号的,其设计与实验一中的设计一样,这里不再赘述。循环彩灯控制器的原理图:
仿真波形如下: 第一种花型:
第二种花型:
第三种花型:
第四种花型:
仿真分析:
将以上仿真波形图和源程序对比,我们可以看到,仿真出来的波形和我们设计的功能一致,这说明源vhdl程序是正确的。实验心得:
本次试验是在没有老师指导的情况下自己完成的,我在参考了网上的程序的情况下,最终成功的设计并正确的演示出了循环彩灯的不同花型。通过本次试验,我真正的体会到了dea这门课的乐趣,也发现它对我们的学习和生活带来很大的方便。
eda课程心得体会篇二
现代eda技术及其发展
引言
随着大规模集成电路技术和计算机技术的不断发展,在涉及通信、国防、航天、医学、工业自动化、计算机应用、仪器仪表等领域的电子系统设计工作中,eda技术的含量正以惊人的速度上升;电子类的高新技术项目的开发也逾益依赖于eda技术的应用。即使是普通的电子产品的开发,eda技术常常使一些原来的技术瓶颈得以轻松突破,从而使产品的开发周期大为缩短、性能价格比大幅提高。不言而喻,eda技术将迅速成为电子设计领域中的极其重要的组成部分。
eda技 术
即电子设计自动(electronic designautomation)技术,以大规模可编程逻辑器件为设计载体,以硬件描述语言为系统逻辑描述的主要表达方式,以计算机、大规模可编程逻辑器件的开发软件及实验开发系统为设计工具,通过有关的开发软件,自动完成用软件的方式设计电子系统到硬件系统的一门技术。eda技术是一种实现电子系统或电子产品自动化设计的技术,与电子技术、微电子技术的发展密切相关。同时它吸收了计算机科学领域的大多数最新研究成果,以计算机作为基本工作平台,利用计算机图形学、拓扑逻辑学、计算数学以至人工智能学等多种计算机应用学科的最新成果而开发出来的一整套电子cad通用软件工具,是一种帮助电子设计工程师从事电子组件产品和系统设计的综合技术。eda技术的出现,为电子系统设计带来了一场革命性的变化。没有eda技术的支持,想要完成上述超大规模集成电路的设计制造是不可想象的。
eda技术的主要内容
eda技术涉及面很广,内容丰富,从教学和实用的角度看,主要应掌握如下四个方面的内容:1)大规模可编程逻辑器件;2)硬件描述语言;3)软件开发工具;4)实验开发系统。其中,大规模可编程逻辑器件是利用eda技术进行电子系统设计的载体,硬件描述语言是利用eda技术进行电子系统设计的主要表达手段,软件开发工具是利用eda技术进行电子系统设计的智能化的自动设计工具,实验开发系统则是利用eda
技术进行电子系统设计的下载工具及硬件验证工具。大规模可编程逻辑器件pld(programmable logic device,可编程逻辑器件)是一种由用户编程以实现某种逻辑功能的新型逻辑器件。fpga和cpld分别是现场可编程门阵列和复杂可编程逻辑器件的简称,两者的功能基本相同,只是实现原理略有不同,所以我们有时可以忽略这两者的区别,统称为可编程逻辑器件或cpld/fpga。pld是电子设计领域中最具活力和发展前途的一项技术,pld能完成任何数字器件的功能。pld如同一张白纸或是一堆积木,工程师可以通过传统的原理图输入法,或是硬件描述语言自由的设计一个数字系统,通过软件仿真,我们可以事先验证设计的正确性。在pcb完成以后,还可以利用pld的在线修改能力,随时修改设计而不必改动硬件电路。使用pld来开发数字电路,可以大大缩短设计时间,减少pcb面积,提高系统的可靠性。pld的这些优点使得pld技术在20世纪90年代以后得到飞速的发展,同时也大大推动了eda软件和硬件描述语言(hdl)的进步。硬件描述语言(hdl)硬件描述语言(hdl)是相对于一般的计算机软件语言如c、pascal而言的。hdl是用于设计硬件电子系统的计算机语言,它描述电子系统的逻辑功能、电路结构和连接方式。hdl具有与具体硬件电路无关和与设计平台无关的特性,并且具有良好的电路行为描述和系统描述的能力,并在语言易读性和层次化结构化设计方面,表现了强大的生命力和应用潜力。用hdl进行电子系统设计的一个很大的优点是设计者可以专心致力于其功能的实现,而不需要对不影响功能的与工艺有关的因素花费过多的时间和精力。就fpga/cpld开发来说,比较常用和流行的hdl主要有vhdl、verilog hdl、abel、ahdl、systemverilog和systemc。其中vhdl、verilog在现在eda设计中使用最多,也拥有几乎所有的主流eda工具的支持。而sys-temverilog和systemc这两种hdl语言还处于完善过程中。现在,vhdl和verilog作为ieee的工业标准硬件描述语言,又得到众多eda公司的支持,在电子工程领域,已成为事实上的通用硬件描述语言。有专家认为,在新的世纪中,vhdl与verilog hdl语言将承担起大部分的数字系统设计任务。
软件开发工具
这类软件一般由pld/fpga芯片厂家提供,基本都可以完成所有的设计输入(原理图或hdl),仿真,综合,布线,下载等工作。集成的pld/fpga开发环境供应商开发环境简介alteramaxplusiialtera的maxplusii曾经是最优秀的pld开发平台之一,适合开发早期的中小规
模pld/fpga使用者众多。目前altera已经停止开发maxplusii,而转向quartusii软件平台quartusiialtera公司新一代pld开发软件,适合大规模fpga的开发xilinxfoundationxilinx公司上一代的pld开发软件,目前xilinx已经停止开发foundation转向ise软件平台ise xilinx公司目前的fpga/pld开发软件
latticeispdesignexpertlattice公司的pld开发软件,目前最新软件改名为ispleverispleverlattice推出的最新一代pld集成开发软件,取代ispexpert成为fpga和pld设计的主要工具。实验开发系统提供芯片下载电路及eda实验/开发的外围资源(类似于用于单片机开发的仿真器),供硬件验证用。一般包括:1)实验或开发所需的各类基本信号发生模块,包括时钟、脉冲、高低电平等2)fpga/cpld输出信息显示模块,包括数据显示、发光管显示、声响指示等3)监控程序模块,提供“电路重构软配置4)目标芯片适配座以及上面的fpga/cpld目标芯片和编程下载电路。
eda技术的应用展望
eda技术将广泛应用于高校电类专业的实践教学和科研工作中与世界各知名高校相比,我国高等院校在eda及微电子方面的教学和科研工作有着明显的差距,我们的学生现在做的课程实验普遍陈旧,动手能力较差。从某种意义上来说,eda教学科研情况如何,代表着一个学校电类专业教学及科研水平的高低,而eda教学科研工作开展起来后,还会对微电子类、计算机类学科产生积极的影响,从而带动各高校相应学科的同步发展。eda技术将广泛应用于专用集成电路和新产品的开发研制中由于可编程逻辑器件性能价格比的不断提高,开发软件功能的不断完善,而且由于用eda技术设计电子系统具有用软件的方式设计硬件;设计过程中可用有关软件进行各种仿真;系统可现场编程,在线升级;整个系统可集成在一个芯片上等特点,使其将广泛应用于专用集成电路和机械、电子、通信、航空航天、化工、矿产、生物、医学、军事等各个领域新产品的开发研制中。eda技术将广泛应用于传统机电设备的升级换代和技术改造传统机电设备的电器控制系统,如果利用eda技术进行重新设计或进行技术改造,不但设计周期短、设计成本低,而且将提高产品或设备的性能,缩小产品体积,提高产品的技术含量,提高产品的附加值。eda技术将在国防现代化建设中发挥重要的作用eda技术是电子设计领域的一场革命,目前正处于高速发展阶段,每年都有新的eda工具问世,我国eda技术的应用水平长期落后于发达国
家,如果说用于民品的核心集成电路芯片还可以从国外买的到的话,那么军用集成电路就必须依靠自己的力量研制开发,因为用钱是买不到国防现代化的,特别是中国作为一支稳定世界的重要力量,更要走自主开发的道路。强大的现代国防必须建立在自主开发的基础上,因此,广大电子工程技术人员应该尽早掌握这一先进技术,这不仅是提高设计效率和我国电子工业在世界市场上生存、竟争与发展的需要,更是建立强大现代国防的需要。
我国eda技术的出路
中国ic设计公司任重道远近年来我国的半导体市场发展突飞猛进,政府积极扶植eda产业,加大招商引资力度,大力建设eda制造业基地,国务院颁布的软件产业和集成电路产业发展的若干政策从政策上为eda的发展营造了良好的外部环境,同时世界领先的一些供应商也看好中国市场的潜在优势,向中国出口先进的设计工具,但具备了工具只是解决了设计手段,而中国的设计师在eda的总体应用能力方面与世界发达国家相比还存在一定的差距,突出表现为专业人才紧缺,缺乏成熟化的整合性集成设计环境,供应商技术服务支持不够,中国eda技术的现在和未来都应重视设计方法、工具和设计语言等方面的问题,从整体上看,中国市场对设计工具的需求已越来越与国际接轨,但是尽管中国eda设计领域中前端的设计相对成熟,但后端例如从网表到c++等的设计却面临着更大的挑战。无论是eda的使用还是eda工具本身,我国与先进国家相比都有很大差距。eda标准化工作在我国刚刚起步,我国有庞大的市场需求和快的增长速度,同时还有后发优势,这是我国eda发展的楔机。在eda标准化方面,目前主要应采用国际和国外先进标准,一方面引进和转化适用的标准,更重要的是加强转化后标准的宣传和推广,通过标准化工作促进我国eda及集成电路产业的发展。
我国如何应对eda技术的挑战
①充分发挥eda仿真技术在教学中的应用,培养更多适应新技术要求的人才。人才需求的变化,技术的发展之快更是需要教育工作者有着人才培养的超前意识。这一意识必须是科学的、崭新的、快速的、甚至是跳跃的。特别是人才的培养需要有掌握新技术的专业教师,还要有新技术的设备才能满足人才培养的要求。新技术、新设备的大量投入可能会影响到进入人才市场最前沿的机遇。这就需要我们思维创新,教学手段创新。作者认为学校实验教学就应该以eda仿真技术
为突破口,引入计算机辅助教学手段,从而加快高素质人才培养的速度,建立雄厚的eda技术人才基础。②以半导体的研究创新促进eda技术发展半导体工艺技术在过去5年中正以飞快的速度发展。硅的生产率每18个就会增加,而设计生产率仍旧严重滞后。自从半导体行业步入0.13μm时代以来,集成电路设计所面临的挑战已被多次提及,范围包括了数字和模拟电路领域。相关的内容包括:功率管理,功能验证,漏电流,对于超过1.5亿个晶体管的复杂设计管理,还有0.13μm以下的混合信号和数字设计等等。过去那些令人生畏的巨大挑战总会被解决,所以说没有人会怀疑半导体技术会适时而及时地找出解决所面临的挑战方案,来击败itrs的预言。但是,为了在设计效率和设计技术有效上取得长足进步和避免成本重复,eda产业应该支持相应的一整套标准,如设计工具的全球战略、可制造性设计、统计设计方法、低功率设计和系统级确认等。③开发实用性更强的eda软件在eda软件开发方面,目前主要集中在美国。但各国也正在努力开发相应的工具。日本、韩国都有asic设计工具,但不对外开放。中国华大集成电路设计中心,也提供ic设计软件,但性能不是很强。相信在不久的将来会有更多更好的功能强大、界面友好、使用方便的设计工具在各地开花并结果。④外设技术与eda工程相结合外设技术与eda工程相结合的市场前景看好,如组合超大屏幕的相关连接,多屏幕技术也有所发展。中国自1995年以来加速开发半导体产业,先后建立了几所设计中心,推动系列设计活动以应对亚太地区其它eda市场的竞争。在信息通信领域,要优先发展高速宽带信息网、深亚微米集成电路、新型元器件、计算机及软件技术、第三代移动通信技术、信息管理、信息安全技术,积极开拓以数字技术、网络技术为基础的新一代信息产品,发展新兴产业,培育新的经济增长点。要大力推进制造业信息化,积极开展计算机辅助设计
(cad)、计算机辅助工程(cae)、计算机辅助工艺(capp)、计算机辅助制造(cam)、产品数据管理(pdm)、制造资源计划(mrpii)及企业资源管理(erp)等。有条件的企业可开展“网络制造”,便于合作设计、合作制造,参与国内和国际竞争。开展“数控化”工程和“数字化”工程。自动化仪表的技术发展趋势的测试技术、控制技术与计算机技术、通信技术进一步融合,形成测量、控制、通信与计算机(m3c)结构。在asic和pld设计方面,向超高速、高密度、低功耗、低电压方面发展。
</div